联系平台
  • 国内刊号:CN 32-1115/S
  • 国际刊号:ISSN 0257-4799
  • 主管部门:中国科学技术协会
  • 主办单位:中国蚕学会
    中国农业科学院蚕业研究所
  • 主编:李木旺
  • 地址:江苏省镇江市丹徒区长晖路
    666号 江苏科技大学期刊社
  • 邮政编码:212100
  • 电话:0511-85616835
  • 信箱:canyekexue@126.com
  • Q Q:849229965

基于拉曼光谱和深度学习的家蚕卵微粒子病无损检测

【期刊年份】2023年第06期
【作者姓名】代芬1  邢鸿昕1  王先燕3  冯敏2  胡豆豆2  孙京臣2  赵懿琨1  王叶元2
【作者单位】1华南农业大学电子工程学院(人工智能学院);2华南农业大学动物科学学院;3广东省蚕业技术推广中心

摘要  为研究家蚕微粒子病检测方法,基于密集连接块提出用R-DenseNet模型对家蚕微粒子病拉曼光谱进行无损检测。以患家蚕微粒子病原原母种卵为实验样本,构建家蚕微粒子病拉曼光谱数据集。R-DenseNet与其他5种分类模型的对比结果表明,不使用额外预处理的R-DenseNet的检测准确率达到97.32%,优于使用预处理的传统分类模型;对于处理60 dB强度噪声的光谱数据,R-DenseNet能达到93.66%的检测精度,在同等性能中,其模型训练的参数量较对比模型减少50%以上,表现出更好的鲁棒性和计算效率。文中提出的R-DenseNet网络结构能够对家蚕卵微粒子病拉曼光谱实现快速、准确且无损的检测,为家蚕微粒子病检测提供了一种新途径。

关键词  拉曼光谱; 家蚕微粒子病; 无损检测; 深度学习