联系平台
  • 国内刊号:CN 32-1115/S
  • 国际刊号:ISSN 0257-4799
  • 主管部门:中国科学技术协会
  • 主办单位:中国蚕学会
    中国农业科学院蚕业研究所
  • 主编:李木旺
  • 地址:江苏省镇江市丹徒区长晖路
    666号 江苏科技大学期刊社
  • 邮政编码:212100
  • 电话:0511-85616835
  • 信箱:canyekexue@126.com
  • Q Q:849229965

基于高光谱成像技术的桑叶含水率可视化检测

【期刊年份】2023年第05期
【作者姓名】杨超1,2  占鹏飞3  何柳1,2  胡文军1,2  魏玉震1,2
【作者单位】1湖州师范学院信息工程学院;2浙江省现代农业资源智慧管理与应用研究重点实验室;3湖州市农业科学研究院

摘要  在桑叶多元化开发及传统养蚕过程中,含水率是衡量桑叶物化状态和指导生产加工的关键参数。为解决传统的烘干称重法含水率检测效率低且操作繁琐的问题。使用高光谱图像采集系统获取桑叶高光谱图像(937~1 718 nm),根据阈值分割法对高光谱图像进行背景剔除,计算各桑叶在高光谱图像中的平均光谱。采用Savitzky-Golay平滑、多元散射校正和正交信号校正方法对光谱进行预处理以消除或降低可能存在的干扰信号,采用连续投影算法和竞争自适应重加权采样算法(competitive adaptive reweighted sampling,CARS)提取光谱特征波段以降低检测模型复杂度,采用偏最小二乘法和反向传播人工神经网络(back propagation artificial neural network,BPNN)构建光谱与桑叶含水率的回归模型。将桑叶高光谱图像中各像素点的光谱数据导入构建的回归模型可实现桑叶含水率可视化检测。结果表明,基于CARS提取的特征波段所构建的BPNN回归模型性能最佳,预测集对应的决定系数达到0.994。文中方法为桑叶含水率快速无损检测提供了新的途径。

关键词  桑叶; 含水率检测; 高光谱成像; 特征波段提取; 可视化